• Home
  • Intro
  • Tags
  • Bookmarks
  • Contact
  • Home
  • Intro
  • Tags
  • Bookmarks
  • Contact
Monthly Archives

September 2021

  • Basic MathematicsCombinatoricsMathematics

    상자에 공 담기

    by Lee Yeohyeon September 30, 2021
    by Lee Yeohyeon September 30, 2021 1329 views
    \( \newcommand{\rbinom}[2]{\left\langle\!{{#1}\atop{#2}}\!\right\rangle} \newcommand{\secondstirlingnum}[2]{\left\{\!{{#1}\atop{#2}}\!\right\}} \newcommand{\firststirlingnum}[2]{\left[\!{{#1}\atop{#2}}\!\right]} \) 상자에 공을 담는 문제를 살펴보자 해보자. 여기서는 \(8\)가지의 경우를 살펴볼 것이다. 즉 공의 구별 여부, 상자의 구별 여부, 그리고 비어 있는 상자의 가능 여부에 따른 셈하기를 살펴볼 것이다. 구별되지 않는 \(r\)개의 공을 구별되지 않는 \(n\)개의 상자에 담을 때, 빈상자가 없도록 담는 경우의 수는? \(\rightsquigarrow\) 이는 어떤 의미에서는 쉽다고 말 할 수 있겠으나, 이를 쉽다고 여길…
    Read more
  • Basic MathematicsCombinatoricsMathematics

    자연수의 분할

    by Lee Yeohyeon September 17, 2021
    by Lee Yeohyeon September 17, 2021 944 views
    자연수 \(r\)의 분할(partition)이란, 합하여 \(r\)이 되는 자연수들의 모임이다. 만일 \(n\)개의 자연수를 합하여 \(r\)을 만들었다면, '\(r\)이 \(n\)개의 부분(part)들로 분할되었다'라고 말한다. 예를 들어, \(5\)는 \(7\)개의 분할, \( 5;\, 4+1,\ 3+2;\, 3+1+1,\ 2+2+1;\, 2+1+1+1;\, 1+1+1+1+1, \) 을 갖는다. \(5\)의 분할을 셀 때, 예를 들어 \(3+2\)와 \(2+3\)은 동일한 것으로 여긴다는 것에 유의하자. 또한 \(5\)를 한 개의 부분으로 분할하는 방법은 한 가지; \(5\)를 두 개의…
    Read more
  • Basic MathematicsCombinatoricsMathematics

    교란순열

    by Lee Yeohyeon September 10, 2021
    by Lee Yeohyeon September 10, 2021 1313 views
    다음 문제를 생각해보자. The Hatcheck Problem. 안쪽에 자신의 이름이 적힌 모자를 하나씩 쓰고 있는 \(n\)명의 사람이 어떤 공연장에 들어가며 출입구에 모자를 맡겼다고 하자. 이들이 공연장에서 나오며 출입구에 맡겼던 \(n\)개의 모자를 각자 하나씩 받았나왔다고 할 때, 자신의 모자를 돌려 받은 사람이 한 명도 없는 경우의 수는? 이 Hatcheck Problem은 굉장히 오래된 문제이다(출입구에 모자를 맡기다니!). 그래도 재미있다. \(n\)개의 양의 정수 \(1, 2,…
    Read more
  • Basic MathematicsCombinatoricsMathematics

    특성함수를 이용한 포함-배제 원리의 증명

    by Lee Yeohyeon September 9, 2021
    by Lee Yeohyeon September 9, 2021 855 views
    이 글에서는 포함-배제의 원리를 일반적이고 명확하게 기술해보고 포함-배제 원리의 산뜻한 증명을 시도해 본다. 이 글에서 소개한 산뜻한 증명은 참고문헌 [1]을 바탕으로 작성한 것이다. 포함-배제의 원리를 산뜻하게 기술하기 학교수학에서는 포함-배제의 원리를 다음과 같이 소개하곤 한다. 포함-배제의 원리(중,고등학교 버전) 유한개의 원소를 갖는 집합 $A, B$에 대하여 \( \vert A\cup B\vert=\vert A\vert +\vert B\vert - \vert A\cap B\vert\) 가 성립한다. 또한 유한개의 원소를…
    Read more
  • Basic MathematicsCombinatoricsMathematics

    셈하기를 이용한 포함-배제의 원리 증명

    by Lee Yeohyeon September 9, 2021
    by Lee Yeohyeon September 9, 2021 1057 views
    Lemma for PIE. 원소의 개수가 \(t\)인 전체집합이 주어져있을 때, 전체집합의 부분집합 \(A, B, C, \ldots, Z\)의 어느 것에도 속하지 않는 원소의 개수는 t \)\( -(\vert A\vert+\vert B\vert+\vert C\vert+\cdots+\vert Z\vert) \)\( +(\vert A\cap B\vert+\vert A\cap C\vert+\cdots+\vert Y\cap Z\vert) \)\( -(\vert A\cap B\cap C\vert+\vert A\cap B\cap D\vert+\cdots+\vert X\cap Y\cap Z\vert) \)\( +(\vert A\cap B\cap C\cap D\vert+\cdots+\vert…
    Read more
  • Basic MathematicsCombinatoricsMathematics

    포함-배제의 원리 소개

    by Lee Yeohyeon September 3, 2021
    by Lee Yeohyeon September 3, 2021 1410 views
    아래에 있는 그림에 관한 이야기로 이야기를 시작해보자. 원소를 \(t\)개 갖고 있는 어떤 전체집합이 있고 그 전체집합의 세 부분집합 \(A, B, C\)가 있을 때, 원소의 개수와 관련된 성질을 관찰해보자. 그림의 직사각형은 전체집합을 나타낸다. 각각의 집합 \(S\)에 대하여, \(S\)의 원소의 개수를 \(\vert S\vert\)로 나타내며 이를 집합 \(S\)의 크기(size)라고 말한다. 그림에 있는 세 개의 다이어그램에서 첫 번째를 보면 자명하면서도 매우 중요한 성질을 찾을…
    Read more

Categories

  • Mathematics
    (42)
    • Combinatorics
      (16)
    • Messy Notes
      (8)
    • Topology
      (2)
    • Algebra
      (2)
    • Basic Mathematics
      (22)
    • Calculus
      (6)
    • Geometry
      (4)
    • Linear Algebra
      (2)
  • Problem Solving
    (4)
  • Education
    (5)
  • TeX
    (3)
  • Miscellaneous Talks
    (13)

Recent Comments

  • Lee Yeohyeon on 바쁜 일정들을 잘 마무리 했으면…
  • SJ on 바쁜 일정들을 잘 마무리 했으면…
  • Lee Yeohyeon on 위상수학 초고속 복습
  • Lee Yeohyeon on 결국에 되긴 되는 구나.
  • Lee Yeohyeon on 끝낼 수 있을까.

Recent Archives

  • May 2025 (1)
  • April 2025 (3)
  • April 2023 (1)
  • January 2022 (1)
  • September 2021 (6)
  • August 2021 (5)
  • June 2021 (1)
  • February 2021 (5)
  • June 2020 (1)
  • May 2020 (3)
  • March 2020 (4)
  • January 2020 (1)

Statistics

  • 71
  • 98
  • 49,887

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • Facebook
  • Email

Copyright 2013-2024 Coslimites


Back To Top