앞으로 종종 각 문제가 다음 문제로 이어지는 일련의 문제를 나열할 것이다. 이들을 처음 읽을 때는 마지막 질문에 답할 수 없을지라도, 다른 질문들을 해결해보며 차분히 읽어나가면 마지막 질문에 대한 답도 “분명히” 눈에 보일 수 있을 것이다. 앞으로 \(\mathrm{A_{1}, A_{2}, A_{3}}\)는 각각 하나의 letter로 여긴다. 아마 먼저 세 개의 \(\mathrm{A}\)를 서로 다른 색의 \(\mathrm{A}\)로 여기고 나중에는 구별할 수 없는 \(\mathrm{A}\)로 여기는 것이…
Tag:
조합
-
-
고등학교에서 배우는 이항정리란 자연수 \(n\)에 대하여 등식 \( (a+b)^n =\sum_{k=0}^n \binom{n}{k}a^{n-k}b^k \label{eq:1}\)가 성립한다는 정리이다. 여기서 기호 \(\binom{n}{k}\)는 \(\binom{n}{k}={}_n\mathrm{C}_r=\frac{n(n-1)\cdots (n-k+1)}{k!}\)를 나타내며, 이 글에서는 편의상 이 기호를 고등학교에서 많이 쓰는 기호인 \({}_n\mathrm{C}_r\)를 대신하여 사용하기로 한다. 식 (1)의 좌변에 \(a=1, b=x\)를 대입하면 다음 등식을 얻는다. \( (1+x)^n =\sum_{k=0}^n \binom{n}{k}x^k \) 이 식은 이항정리의 특별한 경우로 각 변이 다항함수의 형태이다. 이 등식을 일반화한 정리가…