• Home
  • Intro
  • Tags
  • Bookmarks
  • Contact
  • Home
  • Intro
  • Tags
  • Bookmarks
  • Contact
Tag:

집합과 명제

  • Basic MathematicsMathematics

    [수학Ⅰ] 제1장 집합과 논리의 기초(2)

    by Lee Yeohyeon March 18, 2020
    by Lee Yeohyeon March 18, 2020 785 views
    연역적 추론 두 조건 \(p, q\)에 대하여, 문장 `\(p\longrightarrow q\)'는 하나의 명제가 된다. 일반적으로 조건 \(p, q\)의 진리집합을 각각 \(P, Q\)라 할 때, \(p\longrightarrow q\)가 참이면 조건 \(p\)를 참이되게 하는 원소는 조건 \(q\)도 참이 되게 하므로 \(P\subset Q\)인 관계가 성립한다. 또한 \(P\subset Q\)인 관계가 있으면 명제 \(p\longrightarrow q\)는 참이다. 한편, 명제 \(p\longrightarrow q\)가 거짓이라는 것은 조건 \(p\)가 참이 되지만 \(q\)는…
    Read more
  • Basic MathematicsMathematics

    [수학Ⅰ] 제1장 집합과 논리의 기초(1)

    by Lee Yeohyeon March 17, 2020
    by Lee Yeohyeon March 17, 2020 675 views
    제1장 집합과 논리의 기초 ``철학은 우주라는 드넓은 책에 쓰여있다. … 그것은 수학의 언어로 쓰였으며 그것의 문자는 삼각형, 동그라미 그리고 다른 기하학적 수치들이다.'' -갈릴레오 갈릴레이(Galileo Galilei; 1564--1642)- 19세기 말 수학자 칸토르(Cantor, G.; 1845--1918)는 무한집합에 관한 이론을 처음으로 발표하였다. 수학의 긴 역사를 생각해볼 때 `집합'이라는 개념을 구체적으로 다룬 것은 비교적 최근의 일이라 할 수 있다. 오늘날에는 모든 수학적 대상을 집합을 이용하여 정의한다고…
    Read more

Categories

  • Mathematics
    (42)
    • Combinatorics
      (16)
    • Messy Notes
      (8)
    • Topology
      (2)
    • Algebra
      (2)
    • Basic Mathematics
      (22)
    • Calculus
      (6)
    • Geometry
      (4)
    • Linear Algebra
      (2)
  • Problem Solving
    (4)
  • Education
    (5)
  • TeX
    (3)
  • Miscellaneous Talks
    (13)

Recent Comments

  • Lee Yeohyeon on 바쁜 일정들을 잘 마무리 했으면…
  • SJ on 바쁜 일정들을 잘 마무리 했으면…
  • Lee Yeohyeon on 위상수학 초고속 복습
  • Lee Yeohyeon on 결국에 되긴 되는 구나.
  • Lee Yeohyeon on 끝낼 수 있을까.

Recent Archives

  • May 2025 (1)
  • April 2025 (3)
  • April 2023 (1)
  • January 2022 (1)
  • September 2021 (6)
  • August 2021 (5)
  • June 2021 (1)
  • February 2021 (5)
  • June 2020 (1)
  • May 2020 (3)
  • March 2020 (4)
  • January 2020 (1)

Statistics

  • 74
  • 98
  • 49,890

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • Facebook
  • Email

Copyright 2013-2024 Coslimites


Back To Top