여기서는 기초 조합론 수준의 이항정리를 간단히 살펴본다. 일반화된 이항정리와 관련된 글은 "일반화된 이항정리의 두 가지 증명"이라는 제목의 포스트(바로가기)를 참조하라. 식 \((a+b)^{n}\)을 전개했을 때, \(a^{i}b^{j}\)의 계수는 무엇일까? 식 \((a+b)^{n}\)을 \( \underbrace{(a+b)(a+b)(a+b)(a+b)\cdots(a+b)}_{\text{\(n\)개의 \((a+b)\)의 곱}} \) 으로 나타내어, \(n\)개의 인수 중 \(i\)개의 인수에서 \(a\)를 택하고 나머지 \(j\)개의 인수에서 \(b\)를 택하여 곱한 것으로 항 \(a^{i}b^{j}\)가 만들어진다는 것을 알 수 있다. 따라서 \((a+b)^{n}\)를 전개하여 얻는…
Tag:
binomial theorem
-
-
고등학교에서 배우는 이항정리란 자연수 \(n\)에 대하여 등식 \( (a+b)^n =\sum_{k=0}^n \binom{n}{k}a^{n-k}b^k \label{eq:1}\)가 성립한다는 정리이다. 여기서 기호 \(\binom{n}{k}\)는 \(\binom{n}{k}={}_n\mathrm{C}_r=\frac{n(n-1)\cdots (n-k+1)}{k!}\)를 나타내며, 이 글에서는 편의상 이 기호를 고등학교에서 많이 쓰는 기호인 \({}_n\mathrm{C}_r\)를 대신하여 사용하기로 한다. 식 (1)의 좌변에 \(a=1, b=x\)를 대입하면 다음 등식을 얻는다. \( (1+x)^n =\sum_{k=0}^n \binom{n}{k}x^k \) 이 식은 이항정리의 특별한 경우로 각 변이 다항함수의 형태이다. 이 등식을 일반화한 정리가…