• Home
  • Intro
  • Tags
  • Bookmarks
  • Contact
  • Home
  • Intro
  • Tags
  • Bookmarks
  • Contact
Category:

Messy Notes

  • MathematicsMessy Notes

    현대기하학이라 쓰고 근대기하학이라 읽는다 #3

    by Lee Yeohyeon April 15, 2018
    by Lee Yeohyeon April 15, 2018 375 views
    Introduction to Modern Geometry #3 Scribed by Yeohyeon Lee 1.5 등장사상 더 살펴보기 등장사상 \(F:\mathbb{R}^{2}\to\mathbb{R}^{2}\)에 대하여 다음이 성립한다. \(F\)는 곡선의 길이를 보존한다. 즉, 길이를 갖는 곡선 \(\alpha\)에 대하여 \(L(\alpha)=L(F(\alpha))\).\footnote{물론 \(L\)은 곡선의 길이를 재는 함수.} \(F\)는 선분을 선분으로 직선을 직선으로 보낸다. 왜냐하면 서로 다른 임의의 두 점 \(P, Q\in\mathbb{R}^{2}\)에 대하여 \( d(P, Q)=d(F(P), F(Q)) \) 가 성립하는데, 좌변은 \(P, Q\)를 양…
    Read more
  • MathematicsMessy Notes

    현대기하학이라 쓰고 근대기하학이라 읽는다 #1~2

    by Lee Yeohyeon April 14, 2018
    by Lee Yeohyeon April 14, 2018 394 views
    Introduction to Modern Geometry #1~2 Scribed by Yeohyeon Lee Introduction 기하학이란 무엇일까? Felix Klien의 정의까지 가지 않더라도 우리의 마음속엔 기하학이란 `공간'에 대한 공부라는 것이 떠오른다. 이 책에 담겨있는 많은 내용들은 이제 고전기하 혹은 근대기하 정도로 소개할 수 있을 법하다. 유클리드 기하와 비유클리드 기하로 구분하자면, 이 책의 제1, 3, 5장은 유클리드 기하, 제2, 4장은 비유클리드 기하라 할 수 있겠다. 공간에 대한…
    Read more
  • MathematicsMessy Notes

    대수적 위상수학 입문 #5

    by Lee Yeohyeon April 7, 2018
    by Lee Yeohyeon April 7, 2018 694 views
    Introduction to Algebraic Topology #5 Scribed by Yeohyeon Lee 이번 주 수업에는 문제 풀이시간이 좀 있어서, 진도는 조금만 나갔다. $G$가 군이고 $A$가 가환군일 때, 실제로 $\operatorname{Hom}(G, A)$가 군을 이룬다는 것을 보여보자. 그러면 $\operatorname{Hom}(G, A)$는 $\{f : G\to A\mid \mbox{$f$는 함수}\}$의 부분군이라는 것도 보인게 된다. 임의의 $f_1, f_2\in\operatorname{Hom}(G, A)$에 대하여 \forall g, h\in G,\ (f_1+f_2)(gh) =f_1(gh)+f_2(gh) \)\( =…
    Read more
  • MathematicsMessy Notes

    대수적 위상수학 입문 #4

    by Lee Yeohyeon April 7, 2018
    by Lee Yeohyeon April 7, 2018 658 views
    Introduction to Algebraic Topology #4 Scribed by Yeohyeon Lee 4. Algebra 4.1 Linear Algebra 이 강좌에서는 특별한 언급이 없으면, 늘 실수체 위에서의 벡터공간만을 생각한다. 공집합이 아닌 집합 \(V\)에 대하여 덧셈이라고 부르는 연산 \( +: V\times V\to V \) 와 스칼라곱 \( \cdot : \mathbb{R}\times V\to V \) 가 주어져 있으며 이들 덧셈과 스칼라곱이 \((u+v)+ w= u+(v+w)\), for all \(u, v,…
    Read more
  • MathematicsMessy Notes

    대수적 위상수학 입문 #3

    by Lee Yeohyeon March 29, 2018
    by Lee Yeohyeon March 29, 2018 698 views
    Introduction to Algebraic Topology #3 Scribed by Yeohyeon Lee 이번 주도 그냥 꾸준히 기초 배경지식을 상기해본다. 2.4 Lebesque Lemma 여기서는 약방의 감초(?)처럼 쓰이는 보조정리 두 개를 살펴본다. Lemma 4.1 [Lebesque Lemma] \(K\)가 compact metric space라 하자. 그리고 \(\{U_{\alpha}\}_{\alpha\in\mathscr{A}}\)가 \(K\)의 임의의 open cover라 하자. 그러면 \( \exists \varepsilon>0\,\mbox{s.t.}\, \left[ \mbox{$\forall S\subset K$, where $\operatorname{diam}(S)N\)와 \(1/n_{k_{0}}
    Read more
  • MathematicsMessy Notes

    대수적 위상수학 입문 #2

    by Lee Yeohyeon March 19, 2018
    by Lee Yeohyeon March 19, 2018 936 views
    Introduction to Algebraic Topology #2 Scribed by Yeohyeon Lee 2.2 Connected Componoents 위상공간 \( (X, \mathscr{T})\)의 부분공간 \(A\)가 disconnected라는 것은 \( \exists U, V\in\mathscr{T}\setminus\{\varnothing\}\, \mbox{s.t.}\, [ U\cap V=\varnothing, A\subset (U\cap A)\cup (V\cap A) ] \) 라는 뜻이다. 그리고 \(A\)가 connected라는 것은 \(A\)가 disconnected가 아니라는 뜻이다. 연결집합에 대하여 다음이 성립한다. Theorem 2.1 함수 \(f : X\to Y\)이 연속이고 \(X\)가 connected이면 \(f(X)\)도…
    Read more
  • MathematicsMessy Notes

    대수적 위상수학 입문 #1

    by Lee Yeohyeon March 15, 2018
    by Lee Yeohyeon March 15, 2018 970 views
    Introduction to Algebraic Topology #1 Scribed by Yeohyeon Lee 1. Introduction 1.1 중등수학과의 연계 위상수학과 중등수학의 연계로는 어떤 것들을 생각해볼 수 있을까? 함수의 연속: 중등수학의 $\lim_{x\to a}f(x)=f(a)$라는 것은, 함수 $f : X\to Y$와 $a\in X$가 있을 때, 임의의 $f(a)$의 열린근방 $U(\subset Y)$에 대하여 $f^{-1}(U)$가 $a$의 근방이라는 뜻이다. 사잇값 정리: 연속함수 $f : [-1, 1]\to [-1, 1]$, where $f(\pm)=\pm 1$이 있을…
    Read more
  • MathematicsMessy Notes

    Preliminaries for Linear Programming

    by Lee Yeohyeon March 11, 2018
    by Lee Yeohyeon March 11, 2018 496 views
    선형 계획법의 기초 Scribed by Yeohyeon Lee 1. Preliminaries 1.1 Affine Sets 이 강좌에서 생각하는 벡터공간은 \(\mathbb{R}\) 위의 벡터공간 \(\mathbb{R}^{n}\)이다. 그리고 기본적인 벡터공간의 정의 등은 알고 있는 것으로 가정한다. Definition. (Affine Set) A subset \(M\) of \(\mathbb{R}^{n}\) is called an affine set if \( (1-\lambda)x+\lambda y\in M \) for all \(x, y\in M\) and for all \( \lambda\in\mathbb{R}\). Example 1.…
    Read more

Categories

  • Mathematics
    (42)
    • Combinatorics
      (16)
    • Messy Notes
      (8)
    • Topology
      (2)
    • Algebra
      (2)
    • Basic Mathematics
      (22)
    • Calculus
      (6)
    • Geometry
      (4)
    • Linear Algebra
      (2)
  • Problem Solving
    (4)
  • Education
    (5)
  • TeX
    (3)
  • Miscellaneous Talks
    (13)

Recent Comments

  • Lee Yeohyeon on 바쁜 일정들을 잘 마무리 했으면…
  • SJ on 바쁜 일정들을 잘 마무리 했으면…
  • Lee Yeohyeon on 위상수학 초고속 복습
  • Lee Yeohyeon on 결국에 되긴 되는 구나.
  • Lee Yeohyeon on 끝낼 수 있을까.

Recent Archives

  • May 2025 (1)
  • April 2025 (3)
  • April 2023 (1)
  • January 2022 (1)
  • September 2021 (6)
  • August 2021 (5)
  • June 2021 (1)
  • February 2021 (5)
  • June 2020 (1)
  • May 2020 (3)
  • March 2020 (4)
  • January 2020 (1)

Statistics

  • 71
  • 98
  • 49,887

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
  • Facebook
  • Email

Copyright 2013-2024 Coslimites


Back To Top