앞으로 종종 각 문제가 다음 문제로 이어지는 일련의 문제를 나열할 것이다. 이들을 처음 읽을 때는 마지막 질문에 답할 수 없을지라도, 다른 질문들을 해결해보며 차분히 읽어나가면 마지막 질문에 대한 답도 “분명히” 눈에 보일 수 있을 것이다. 앞으로 \(\mathrm{A_{1}, A_{2}, A_{3}}\)는 각각 하나의 letter로 여긴다. 아마 먼저 세 개의 \(\mathrm{A}\)를 서로 다른 색의 \(\mathrm{A}\)로 여기고 나중에는 구별할 수 없는 \(\mathrm{A}\)로 여기는 것이…
Monthly Archives
February 2021
-
-
비둘기의 수가 비둘기집의 개수보다 많다면 (그리고 비둘기들이 모두 비둘기집으로 들어간다면) 반드시 어떤 비둘기집에는 두 마리 이상의 비둘기가 들어 있다. 좀 더 구체적으로 \(n+1\)마리 혹은 더 많은 비둘기를 \(n\)개의 비둘기집에 배정하면, 비둘기 중 적어도 두 마리는 같은 비둘기집에 배정된다. 더 일반적으로는, 비둘기의 수가 비둘기 집의 수의 \(k\)배 보다 더 많다면, 반드시 어떤 비둘기집에는 \(k+1\)마리 이상의 비둘기가 들어가 있다. 이러한 원리를 비둘기집의…
-
More Quickies. 서로 다른 \(5\)개의 라틴책, 서로 다른 \(7\)개의 그리스책이 있을 때, 하나의 라틴책과 하나의 그리스책을 고르는 경우의 수는? 하나의 \(2\)-letter word를 만드는 경우의 수는? 하나의 \(2\)-letter word를 만드는데, letter들이 서로 다른 것으로 만드는 경우의 수는? 하나의 \(2\)-letter word를 만드는데, 한 자음 뒤에 한 모음이 따라 오도록 만드는 경우의 수는? \(3\)명의 남자와 \(8\)명의 여자에서, 한 남자와 한 여자를 택하는 경우의…
-
이 글에서는 가능한 한 앞으로 중복되는 부연 설명을 피하기 위해 이 블로그에 올리는 조합론 혹은 이산수학 관련 포스트 전반에 걸쳐 적용되는 몇 가지 관습 혹은 관례를 명시한다. 사람은 항상 서로 구별된다. 그리고 편의상 오렌지는 서로 구별되지 않는다. 마찬가지로 사과, A, 빨간공, 그리고 특별한 언급이 없는 한 100원짜리 동전도 그들끼리는 서로 구별되지 않는다. 예를 들어, 복숭아, D, 초록공 등에도 일반적으로 동일한…
-
그렇다. 셈하는 것은 어렵다. “Counting”이란 전혀 쉬워 보이지 않는 말인 “계수적 조합론(enumerative combinatorics)”의 줄임말이다. 이는 “How many ways are there to . . .”로 시작하는 질문을 다루는 이산수학의 한 과목이라 할 수 있다. 예를 들어, 우리는 곧 “\(8\)가지 맛을 고를 수 있는 아이스크림 콘 \(12\)개를 주문하는 경우의 수는?”과 같은 질문의 답을 알게 될 것이다. 이 과목이 끝날 때는 “\(k\)개의 색을…