사잇값 정리. 함수 $f$가 닫힌구간 $[a, b]$에서 연속이면, $f(a)$와 $f(b)$ 사이에 있는 임의의 $y_0$에 대하여, $y_0=f(c)$를 만족시키는 $c$가 구간 $(a, b)$에 존재한다. 증명 편의상 \( f(a)< y_0 < f(b) \)로 두고 집합 $ A=\{ x\in [a, b]\mid f(x) < y_0\} $를 생각하자. $a\in A$이고 $A\subset [a, b]$이므로 $A$는 공집합이 아니고 유계인 집합이다. 실수의 완비성 공리에 의해 $A$의 최소상계 $x_0\in\mathbb{R}$이 존재한다.…
Monthly Archives