여기서는 기초 조합론 수준의 이항정리를 간단히 살펴본다. 일반화된 이항정리와 관련된 글은 "일반화된 이항정리의 두 가지 증명"이라는 제목의 포스트(바로가기)를 참조하라. 식 \((a+b)^{n}\)을 전개했을 때, \(a^{i}b^{j}\)의 계수는 무엇일까? 식 \((a+b)^{n}\)을 \( \underbrace{(a+b)(a+b)(a+b)(a+b)\cdots(a+b)}_{\text{\(n\)개의 \((a+b)\)의 곱}} \) 으로 나타내어, \(n\)개의 인수 중 \(i\)개의 인수에서 \(a\)를 택하고 나머지 \(j\)개의 인수에서 \(b\)를 택하여 곱한 것으로 항 \(a^{i}b^{j}\)가 만들어진다는 것을 알 수 있다. 따라서 \((a+b)^{n}\)를 전개하여 얻는…
-
-
Quickies. 아래의 문제들을, 각 질문에 바로 답할 수 있을 때까지, 다른 날짜에 세 번 이상 풀어보는 것을 강력히 권한다. 각 질문을 읽으면서 바로 답할 수 있을 정도가 되어야 한다. \(16\)쌍의 여학생-남학생 커플에서 5명의 여학생을 택하는 경우의 수는? \(7\)개의 글자 AAABBBB를 배열하는 경우의 수는? \(12\)개의 글자 AAABBBBCCCCC를 배열할 때, C끼리는 이웃하지 않도록 배열하는 경우의 수는? \(10\)명의 사람을 일렬로 앉히는 경우의 수는?…
-
Basic MathematicsCombinatoricsMathematics
콘 아이스크림, 최단 경로의 개수
by Lee Yeohyeonby Lee Yeohyeon 1228 views콘 아이스크림 \(12\)가지의 맛을 고를 수 있는 아이스크림 가게에서, 중복을 허용하지 않고 \(5\)개의 싱글 콘 아이스크림을 주문하는 경우의 수는 \(\binom{12}{5}\)임을 알고 있다. 또한 중복을 허용하여 싱글 콘 아이스크림을 주문하는 경우의 수는 \(\binom{12+5-1}{5}\)인 것도 알고 있다. 이제 하나의 콘에 두 가지 맛을 고를 수 있는 더블 콘 아이스크림을 생각해보자. 물론 콘에 아이스크림을 담는 순서를 고려해야 한다는 진정한 아이스크림 미식가와 아이스크림을 담는… -
서로 다른 \(n\)개의 물건에서 중복을 허용하여 \(r\)개를 선택하는 경우의 수를 찾아보려 한다. 이를 위해 Mississippi problem을 활용할 것이다. 먼저 다음의 기초적인 문제의 답을 확실히 할 수 있어야 한다. 기둥들을 일렬로 세워 울타리를 만드는데, 인접한 두 기둥은 \(2\)m만큼 떨어져있게 심고, 맨 끝의 기둥 끼리는 \(20\)m만큼 떨어져 있게한다고 할 때, 기둥이 총 몇 개 필요한가? 일렬로 있는 \(10\)개의 물건을 서로 분리하기 위해,…
-
여기서는 원탁에 자리배치를 하는 경우의 수를 생각해볼 텐데, 적어도 이 책에서의, 원탁의 자리배치의 개수를 셈할 때의 관습은 다음과 같다. 두 자리배치 $s_{1}, s_{2}$에 대하여, $s_{1}$의 각 사람마다 그의 오른쪽에 앉은 사람이, $s_{2}$에서 일치할 때, $s_{1}, s_{2}$는 동일한 자리배치인 것으로 본다. 즉 원탁 배열은 회전하여 일치하는 것 끼리는 같은 것으로 본다는 것이다. 의자들은 고르게 분포되어 있으며 사람들 모두가 원탁 둘레로 배치될…
-
이 글은 현재는 절판된 Serge Lang의 선형대수 교재 제2판([1], VII, §6)의 내용을 토대로 쓴 것이다. 퍼가지 마시라. 이 글에서는 행렬식을 한 도형의 체적으로 이해하는 이야기를 소개한다. 먼저 2-차원의 경우를 논할텐데, '체적(volume)'이라는 용어를 2-차원 도형의 넓이를 일컬을 때에도 그냥 사용하고자 한다. 또한 '\(\operatorname{Vol}\)'와 같은 기호를 이용하여 넓이를 나타내기도 할 것이다. 물론 이 기호를 일반적인 고차원 도형의 체적을 나타내는 기호로도 쓸 것이다.…
-
앞으로 종종 각 문제가 다음 문제로 이어지는 일련의 문제를 나열할 것이다. 이들을 처음 읽을 때는 마지막 질문에 답할 수 없을지라도, 다른 질문들을 해결해보며 차분히 읽어나가면 마지막 질문에 대한 답도 “분명히” 눈에 보일 수 있을 것이다. 앞으로 \(\mathrm{A_{1}, A_{2}, A_{3}}\)는 각각 하나의 letter로 여긴다. 아마 먼저 세 개의 \(\mathrm{A}\)를 서로 다른 색의 \(\mathrm{A}\)로 여기고 나중에는 구별할 수 없는 \(\mathrm{A}\)로 여기는 것이…
-
비둘기의 수가 비둘기집의 개수보다 많다면 (그리고 비둘기들이 모두 비둘기집으로 들어간다면) 반드시 어떤 비둘기집에는 두 마리 이상의 비둘기가 들어 있다. 좀 더 구체적으로 \(n+1\)마리 혹은 더 많은 비둘기를 \(n\)개의 비둘기집에 배정하면, 비둘기 중 적어도 두 마리는 같은 비둘기집에 배정된다. 더 일반적으로는, 비둘기의 수가 비둘기 집의 수의 \(k\)배 보다 더 많다면, 반드시 어떤 비둘기집에는 \(k+1\)마리 이상의 비둘기가 들어가 있다. 이러한 원리를 비둘기집의…
-
More Quickies. 서로 다른 \(5\)개의 라틴책, 서로 다른 \(7\)개의 그리스책이 있을 때, 하나의 라틴책과 하나의 그리스책을 고르는 경우의 수는? 하나의 \(2\)-letter word를 만드는 경우의 수는? 하나의 \(2\)-letter word를 만드는데, letter들이 서로 다른 것으로 만드는 경우의 수는? 하나의 \(2\)-letter word를 만드는데, 한 자음 뒤에 한 모음이 따라 오도록 만드는 경우의 수는? \(3\)명의 남자와 \(8\)명의 여자에서, 한 남자와 한 여자를 택하는 경우의…
-
이 글에서는 가능한 한 앞으로 중복되는 부연 설명을 피하기 위해 이 블로그에 올리는 조합론 혹은 이산수학 관련 포스트 전반에 걸쳐 적용되는 몇 가지 관습 혹은 관례를 명시한다. 사람은 항상 서로 구별된다. 그리고 편의상 오렌지는 서로 구별되지 않는다. 마찬가지로 사과, A, 빨간공, 그리고 특별한 언급이 없는 한 100원짜리 동전도 그들끼리는 서로 구별되지 않는다. 예를 들어, 복숭아, D, 초록공 등에도 일반적으로 동일한…
-
그렇다. 셈하는 것은 어렵다. “Counting”이란 전혀 쉬워 보이지 않는 말인 “계수적 조합론(enumerative combinatorics)”의 줄임말이다. 이는 “How many ways are there to . . .”로 시작하는 질문을 다루는 이산수학의 한 과목이라 할 수 있다. 예를 들어, 우리는 곧 “\(8\)가지 맛을 고를 수 있는 아이스크림 콘 \(12\)개를 주문하는 경우의 수는?”과 같은 질문의 답을 알게 될 것이다. 이 과목이 끝날 때는 “\(k\)개의 색을…
-
AlgebraBasic MathematicsMathematics
정수계수 다항식의 인수분해와 Gauss의 보조정리
by Lee Yeohyeonby Lee Yeohyeon 727 views'가우스의 정리'라고 말하면 그 종류가 너무 많아서 무엇을 일컫는지 혼동의 여지가 있습니다. 지금 살펴보고자 하는 가우스의 보조정리는 다항식의 인수분해와 관련된 정리입니다. 다음과 같은 질문을 할 수 있습니다. 정수계수 다항식이 (차수가 더 낮은) 유리계수 다항식 두 개로 인수분해될 필요충분조건이 그 다항식이 (차수가 더 낮은) 정수계수 다항식 두 개로 인수분해되는 것임을 어떻게 증명할 수 있는가? 인수분해를 섬세하게 살펴본 학생은 위의 질문에 언급된…