순열

by Lee Yeohyeon
830 views

More Quickies.

  1. 서로 다른 \(5\)개의 라틴책, 서로 다른 \(7\)개의 그리스책이 있을 때, 하나의 라틴책과 하나의 그리스책을 고르는 경우의 수는?
  2. 하나의 \(2\)-letter word를 만드는 경우의 수는?
  3. 하나의 \(2\)-letter word를 만드는데, letter들이 서로 다른 것으로 만드는 경우의 수는?
  4. 하나의 \(2\)-letter word를 만드는데, 한 자음 뒤에 한 모음이 따라 오도록 만드는 경우의 수는?
  5. \(3\)명의 남자와 \(8\)명의 여자에서, 한 남자와 한 여자를 택하는 경우의 수는?
  6. 일렬로 배열되어 있는 \(5\)개의 의자에 \(2\)명의 사람을 앉히는 경우의 수는?
  7. 일렬로 배열되어 있는 \(5\)개의 의자 중 \(2\)개의 의자를 택하는 경우의 수는?
  8. 하나의 \(4\)-letter word를 만드는 경우의 수는?
  9. \(5\times7\) 행렬에서 하나의 성분을 택하는 경우의 수는?
  10. \(m\times n\) 행렬에서 하나의 성분을 택하는 경우의 수는?
  11. 관찰 (곱의 원리) 사건 A가 일어나는 경우의 수가 \(m\)이고, 사건 A의 결과와 관계없이 사건 B가 일어나는 경우의 수가 \(n\)일 때, 이들 두 사건이 일어나는 경우의 수는 \(mn\)이다.

  12. 동전 하나와 주사위 하나를 던질 때의 경우의 수는?
  13. 동전 하나, 주사위 하나를 던지고, 하나의 카드 덱에서 하나 뽑을 때의 경우의 수는?
  14. 한 덱에 있는 ace들을 일렬로 나열하는 경우의 수는?
  15. 한 덱에 있는 spade들을 일렬로 나열하는 경우의 수는?
  16. \(n\)개의 원소로 이루어진 집합 \(\{a_{1}, a_{2}, a_{3},\ldots , a_{n}\}\)의 모든 원소를 일렬로 나열하는 경우의 수는?
  17. 이러한 배열 각각을 이 집합의 원소들의 순열(permutation)이라 부른다. \(n\)개의 원소 중 정확히 \(r\)개를 사용하여 배열한 것을 이 집합의 원소들의 \(r\)-순열(\(r\)-permutation)이라 부른다. 서로 다른 \(n\)개의 대상의 \(r\)-순열은 \[ (n-0)(n-1)(n-2)\cdots(n-(r-1)) \] 개 있음을 알 수 있다.1

    관찰 서로 다른 \(n\)개의 물건의 순열들의 개수는 \(n!\)이다. 또한 서로 다른 \(n\)개의 물건의 \(r\)-순열들의 개수는 \(n!/(n-r)!\)임을 알 수 있다. 우리나라 고등학교에서는 이를 \({}_{n}\mathrm{P}_{r}\)로 쓴다. 즉 \[ {}_{n}\mathrm{P}_{r}=\frac{n!}{(n-r)!} \] 이다.

  1. 앞으로 '순열'이라고도 쓰고 'permutation'이라고도 쓸 것이다.

Leave a Comment